
 
 

Structural Dynamic Finite Element Model Updating using  
Derringer’s Function: A Novel Technique 

 
SHANKAR SEHGAL and HARMESH KUMAR* 

Department of Mechanical Engineering 
University Institute of Engineering and Technology 

Panjab University, Chandigarh, 160014 
INDIA 

*harmesh@pu.ac.in http://scholar.google.com.sg/citations?user=p7HiX00AAAAJ&hl=en 
 
 
Abstract: - Aim of this research paper is to develop a new structural dynamic finite element model updating 
(FEMU) technique using Derringer’s desirability function. Proposed FEMU technique allows formation of sub-
objectives of model updating problem in a detailed and flexible but in a simplified and user friendly manner. 
Beauty of the proposed technique is that user can set target value, lower limit, upper limit, weightage on lower 
limit, weightage on upper limit and relative importance of each sub-objective of model updating problem. Two 
updating parameters (Elastic modulus and moment of inertia) of a beam structure are varied to develop 
experimental design matrix. This design matrix is further used to generate response surfaces for first five 
natural frequencies using response surface methodology. Derringer’s function approach is used for formulating 
individual desirability function for each sub-objective by considering corresponding natural frequency 
predicted by response surface model, simulated experimental natural frequency (target value), desired upper 
and lower limits on predicted frequency, weights on upper and lower limits, and, importance of the related 
mode (sub-objective). Individual desirability functions are then combined to produce a single overall 
desirability function, thereby reducing the complex multi-objective FEMU problem to single objective FEMU 
problem. Optimum (maximum) value of overall desirability function is then used to find out the value of 
updating parameters. Updating parameters are then used to produce an updated FE model. Dynamic results of 
updated FE model are then compared with their simulated experimental counterparts and it is found that 
absolute average error between FE and simulated experimental results is reduced from 14.6% (before updating) 
to just 0.02% (after updating), thereby suggesting successful implementation of proposed FEMU technique. 
 
Key-Words: - Structural dynamics; Finite Element; Model updating; Response surface methodology; 
Derringer’s function. 
 
Abbreviations  
ANOVA analysis of variance 
FE  finite element 
FEMU  finite element model updating 
PRESS predicted residual error sum of 

squares 
RS  response surface 
RSM  response surface methodology 
 
Nomenclature 
 coded parameter related to elastic modulus ܣ
 coded parameter related to moment of inertia ܤ
 ௜ coefficient of ݅th linear term of polynomialܥ

model 
 overall desirability function ܦ
 ௜ coefficient of ݅th quadratic term ofܦ

polynomial model 
݀௜ ݅th Individual desirability function 
 elastic modulus ܧ

F test statistic of F-test 
݂ response function 
 moment of inertia ܫ
݅ integer 
݉ number of independent parameters 
݊ number of individual desirability functions / 

natural frequencies / modes 
R2 coefficient of determination 
 ௜ relative importance of ݅th individualݎ

desirability function 
 variance-covariance matrix ܄
 ଵ weight on lower limit of individualݓ

desirability function 
 ଶ weight on upper limit of individualݓ

desirability function 
 design matrix as being a set of value ܆

combinations of coded parameters 
ܺ௜ ݅th independent parameter 
ܻ RS predicted response 
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 experimental error ߝ
 standard deviation ߪ
ω௜ experimental / FE predicted ݅th natural 

frequency 
ෝ߱௜ RS predicted ݅th natural frequency 
ෝ߱௜௅௅ lower limit for RS predicted ݅th natural 

frequency 
ෝ߱௜் target value for RS predicted ݅th natural 

frequency 
ෝ߱௜௎௅ upper limit for RS predicted ݅th natural 

frequency 
 
 
1 Introduction 
Use of lighter materials in latest machines and 
structures is increasing day by day. For example, in 
automotive, aircraft, and spaceship engines, there is 
an ever existing demand of attaining better fuel 
economy; which can be met to a good extent by 
using thin products and low density materials such 
as aluminium and plastics composites instead of the 
conventionally used high density materials such as 
steels. Particularly, in satellites, some parts are so 
thin that they can get collapsed just due to their own 
weight if tested under the effect of gravity. Thin and 
light weight products have lot more tendencies to 
vibrate than their thick and heavy weight 
counterparts. Excessive vibrations may even cause 
pre-mature failure of products. Prediction of 
accurate dynamic behavior constitutes one of the 
most important processes in design of rotors of 
turbines and many other machines [1]. Thus it 
becomes imperative for engineers to understand the 
dynamic behavior of structures through their 
dynamic analysis. Therefore better dynamic testing 
and analysis tools are becoming an urgent need of 
hour. Dynamic analysis aims at understanding, 
evaluating, analyzing and modifying (if required) 
the structural dynamic behavior. Structural dynamic 
behavior can be represented by many terms such as 
natural frequencies, eigenvalues, mode-shapes, 
damping ratios, frequency response functions etc. 
Further, to analyze the dynamic behavior of 
structures, either experimental route or theoretical 
approach [2–3] can be followed.  
 Theoretical route involves the formation of 
an analytical model of the system either using a 
classical method [4] or through finite element (FE) 
method [5]. Application of classical method is 
generally limited to simple systems only, while FE 
method is preferred for real life complex systems. 
However, FE method is not able to predict dynamic 
responses of structures with complete accuracy due 

to presence of certain errors such as incorrect values 
of material (such as modulus of elasticity, density 
etc.) and structural (thickness, moment of inertia 
etc.) properties. Thus there is a need to correct 
(update) an FE model so that its vibration behavior 
matches with experimental dynamic response. The 
procedure used to update the FE model is called 
finite element model updating (FEMU) [6].  

Most of the early contributions in the field 
of FEMU have been reviewed by Imregun and 
Visser [7], and, Mottershead and Friswell [8]. 
FEMU methods can be broadly classified into direct 
and iterative methods. Direct methods are non-
iterative in nature and are essentially one step 
methods [9–12]. Updated FE models produced by 
such methods may not be symmetric and positive 
definite, hence such methods are not much useful in 
industry. Industrial applications generally rely upon 
the use of iterative methods [13–32]. In present 
research work, FEMU has been considered as a 
multi-objective optimization problem. In such 
problems, experimental responses are considered as 
targets, while parameters of FE model are identified 
(corrected or updated) in such a way that FE 
responses match with corresponding experimental 
response values. By considering FEMU as an 
optimization problem, its solution can be found by 
first defining the multi-objective functions and 
constraints; then certain optimization algorithm is 
applied to find out the optimal solution (here 
updating parameters). FEMU being a multi-
objective optimization problem; success and 
efficiency of any FEMU technique will depend a lot 
upon the formulation of objective functions and 
constraints. Therefore, purpose of present research 
work is to present a more detailed, flexible, 
simplified, and user friendly formulation of 
objective functions of FEMU. Another aim is to 
explore the application of Derringer’s function 
approach [33] in FEMU. 
 In this paper, one dedicated sub-objective is 
defined for each frequency predicted by response 
surface method (RSM) in such a way that the user 
can set the target value (experimental response), 
desired upper and lower limits on predicted 
frequency, weights on upper and lower limits, and, 
relative importance for each sub-objective 
separately. Then, by employing the concept of 
Derringer’s function [33], all sub-objectives are 
converted into scale free values called individual 
desirability functions. The Individual desirability 
function of any particular mode will attain a unit 
value when the frequency predicted by response 
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surface (RS) model of that particular mode matches 
exactly with the corresponding experimental (target) 
frequency. Value of the individual desirability 
function will be zero if the RS predicted frequency 
falls short of the desired lower limit or if it exceeds 
the set upper limit. If RS predicted frequency is 
away from target value but within the set limits then 
value of individual desirability will be less than 
unity and will be governed by shape of desirability 
function. Further, individual desirability functions 
are then multiplied together to form an overall 
desirability function. Thus multi-objective FEMU 
problem is transformed into a single objective 
optimization problem, where the main objective is 
that overall desirability function should approach 
unity. It is to be mentioned here that overall 
desirability function can approach unity only if all 
individual desirability functions also approach the 
unit value separately. 
 Basic theory of D-optimal design, RSM and 
desirability function in brief has been discussed in 
section 2 of this research paper. Section 3 discusses 
simulated experimental set-up of the beam structure. 
Development of response surfaces, formulation of 
objective functions of FEMU, optimization of 
overall desirability along with its application to 
FEMU of a beam structure have been presented in 
section 4. Success of the proposed technique is 
measured by performing confirmation experiments 
as outlined in section 4.5. Section 5 discusses the 
conclusions drawn out of present research work. 
 
 
2 Theory 
The novel technique of model updating proposed in 
this paper is based upon the use of D-optimal 
design, RSM and desirability function; basic theory 
of which is presented in subsections 2.1, 2.2 and 2.3 
respectively. 
 
 
2.1 D-optimal Design 
There are several design optimality criterion 
available in literature such as D-optimality, A-
optimality, G-optimality. Among all, D-optimality is 
the most popular one [34]. In general, modeling 
accuracy, namely, goodness-of-fit, can be measured 
by a variance-covariance matrix ܄ given by (1).  
 
܄  = ൯܆′܆ଶ൫ߪ

ିଵ
                                             (1) 

 

where, ߪ is the standard deviation. 
Naturally, it is expected to minimize (܆′܆)ିଵ in 
order to obtain an RS model. In statistics, 
minimizing (܆′܆)ିଵ is equivalent to maximizing the 
determinant of ܆′܆. Therefore, the criteria for 
constructing the design matrix with a maximized 
 from a set of candidate samples can be defined |܆′܆|
as D-optimality. Initial ‘D’ stands for ‘determinant’. 
By using D-optimal designs, generalized variance of 
a predefined model is minimized, which means the 
‘optimality’ of a specific D-optimal design is model 
dependent. Unlike standard designs, D-optimal 
designs are straight optimization and their matrices 
are generally not orthogonal with the effect 
estimates correlated.  
 
2.2 Response Surface Methodology 
Response surface methodology is a collection of 
mathematical and statistical techniques that are 
useful for modeling and analysis of problems in 
which a response of interest is influenced by several 
input variables and the objective is to optimize this 
response [35, 36]. It is a sequential experimentation 
strategy for empirical model building and 
optimization. By conducting experiments and 
applying regression analysis, a model of the 
response to some independent input variables can be 
obtained. Based on the model of the response, a near 
optimal point can then be deduced. RSM is often 
applied in the characterization and optimization of 
processes. Though, in this paper, RSM has been 
applied to FEMU problem. In RSM, it is possible to 
represent independent process parameters in 
quantitative form as written in (2). 
 
 ܻ = ݂(ܺଵ,ܺଶ,ܺଷ, …ܺ௠) ±  (2)                      ߝ
 
 where, ܻ is the response predicted by RSM, 
݂ is the response function, ߝ is the experimental 
error, and ܺଵ,ܺଶ,ܺଷ, …ܺ௠ are independent 
parameters. 
 By plotting the expected response of ܻ, a 
surface, known as the response surface is obtained. 
The form of ݂ is unknown and may be very 
complicated. Thus, RSM aims at approximating ݂ 
by a suitable lower ordered polynomial in some 
region of the independent design variables. If the 
response can be well modeled by a linear function of 
the ݉  independent variables, the function ܻ can be 
written as: 
 
 ܻ = ଴ܥ + ଵܺଵܥ + ଶܺଶܥ +⋯+
௠ܺ௠ܥ                        ±  (3)                                               ߝ
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 However, if a curvature appears in the 
system, then a higher order polynomial such as the 
quadratic model as shown in (4) may be used. 
 
 ܻ = ଴ܥ + ∑ ௜ܺ௜௠ܥ

௜ୀଵ + ∑ ௜ܺ௜ଶ௠ܦ
௜ୀଵ ±  (4)      ߝ

 
 The objective of using RSM is not only to 
investigate the response over the entire factor space, 
but also to locate the region of interest where the 
response reaches its optimum or near optimal value. 
By studying carefully the RS model, the 
combination of factors, which gives the best 
response, can then be established. RSM is a 
sequential process and its procedure can be 
summarized as shown in Fig. 1. 
 

 
Fig. 1 Procedure of response surface 

methodology [37]. 
 
2.3 Desirability Function 
Derringer and Suich [33] describe a multiple 
response method called desirability. It is an 
attractive method for industry for optimization of 
multiple quality characteristic problems. The 
method makes use of an objective function,ܦ, called 
the desirability function and transforms an estimated 
response into a scale free value (݀௜) called 
desirability. The desirable ranges are from zero to 
one (least to most desirable, respectively). The 
factor settings with maximum total desirability are 

considered to be the optimal parameter conditions. 
The simultaneous objective function is a geometric 
mean of all transformed responses: 
 
ܦ  = (݀ଵ × ݀ଶ × ݀ଷ × … × ݀௡)ଵ ௡ൗ =
                        (∏ ݀௜௡

௜ )ଵ ௡ൗ                                               (5) 
 
 where ݊ is the number of responses in the 
measure. If any of the responses falls outside the 
desirability range, the overall function becomes 
zero. It can be extended to 
 

ܦ  = ൫݀ଵ
௥భ × ݀ଶ

௥మ × ݀ଷ
௥య × ݀ସ

௥ర × ݀ହ
௥ఱ൯

ଵ
∑௥೔ൗ (6) 

 
 where ݎ௜ represents the relative importance 
of the ݅th individual desirability function. This is a 
better representation than (5), because it can reflect 
the possible difference in importance of a number of 
individual desirability functions [38]. 
 Desirability is an objective function that 
ranges from zero outside of the limits to one at the 
goal. The numerical optimization finds a point that 
maximizes the desirability function. Adjusting the 
weight or importance may alter the characteristics of 
a goal. For several responses, all goals get combined 
into one desirability function. For simultaneous 
optimization, each response must have a lower and 
upper limit assigned to each goal. The “Goal” field 
for responses must be one of five choices: “none”, 
“maximum”, “minimum”, “target”, or “in range”. 
Factors will always be included in the optimization 
at their design range by default, or as a maximum, 
minimum of target goal. The meanings of the goal 
parameters are: 
 
 Maximum: 
o ݀௜ = 0 if response < lower limit 
o 0 ≤ ݀௜ ≤ 1 as response varies from lower to        
upper limit 
o ݀௜ = 1 if response > upper limit 
 
 Minimum: 
o ݀௜ = 1 if response < lower limit 
o 1 ≤ ݀௜ ≤ 0 as response varies from lower to 
upper limit 
o ݀௜ = 0 if response > upper limit 
 Target: 
o ݀௜ = 0 if response < lower limit 
o 0 ≤ ݀௜ ≤ 1 as response varies from lower 
limit to target 
o 1 ≥ ݀௜ ≥ 0 as response varies from target to 
upper limit 
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o ݀௜ = 0 if response > upper limit 
 
 Range: 
o ݀௜ = 0 if response < lower limit 
o ݀௜ = 1 as response varies from lower to 
upper limit 
o ݀௜ = 0 if response > upper limit 
 
 The ݀௜ for “in range” are included in the 
product of the desirability function “ܦ”, but are not 
counted in determining “݊”: ܦ = (∏݀௜)

ଵ ௡ൗ . If the 
goal is none, the response will not be used for the 
optimization. 
 Derringer’s desirability function has been 
investigated by many researchers in a number of 
fields like chromatography [39, 40], manufacturing 
[38, 41, 42], and renewable energy [43]. Although 
Derringer’s desirability function has been 
successfully used in many other multi-objective 
optimization problems, but its benefits have not yet 
been explored in the field of FEMU. This research 
paper develops a model updating technique by 
utilizing Derringer’s desirability function for 
detailed, flexible and user-friendly formulation of 
objective functions of FEMU problem. 
 In this paper, Derringer’s desirability 
function was used with the purpose of efficient and 
flexible formulation of objectives of FEMU based 
multi-objective optimization problem. While 
formulating the objectives, experimentally 
(simulated experiments) obtained natural 
frequencies for first five modes were considered as 
target values ( ෝ߱௜்) for RS model. The lower limit 
( ෝ߱௜௅௅) and upper limit ( ෝ߱௜௎௅) were set separately 
for each RS predicted natural frequency. Here, ෝ߱௜௎௅ 
and ෝ߱௜௅௅ were taken as ±5% of the corresponding 
ෝ߱௜் value. Weight on lower and upper limit were 
taken as ݓଵ and ݓଶ respectively. The weight ݓଵ was 
taken as unity, so that the individual desirability 
function could vary linearly between its target value 
( ෝ߱௜்) and lower limit ( ෝ߱௜௅௅). Similarly a unit value 
of ݓଶ was decided to allow linear variation of the 
individual desirability function between its target 
value ( ෝ߱௜்) and upper limit ( ෝ߱௜௎௅).The natural 
frequencies predicted by RS model were treated as 
response variables ( ෝ߱௜) to be optimized. Then, five 
individual desirability functions were developed 
(one for each response variable) using the method of 
Derringer and Suich [33] as represented in (7). 
 

݀௜ =

⎩
⎪
⎨

⎪
⎧ቂ ఠෝ ೔ିఠෝ ೔ಽಽఠෝ ೔೅ିఠෝ ೔ಽಽ

ቃ
௪భ

, ෝ߱௜௅௅ ≤ ෝ߱௜  ≤ ෝ߱௜்

ቂ ఠෝ ೔ೆಽିఠෝ ೔
ఠෝ ೔ೆಽିఠෝ ೔೅

ቃ
௪మ

, ෝ߱௜் < ෝ߱௜  ≤ ෝ߱௜௎௅
0                , ෝ߱௜ < ෝ߱௜௅௅ ݎ݋ ෝ߱௜ > ෝ߱௜௎௅

(7)  

 
 It is clear from (7) that, if ෝ߱௜ and ෝ߱௜் match 
perfectly, it will lead to a unit value of ݅th individual 
desirability function. A unit value is also the 
maximum value that an individual desirability 
function can attain. More the mismatch between ෝ߱௜ 
and ෝ߱௜், lower will be the value of ݅th individual 
desirability function. Moreover, if ෝ߱௜ is not within 
the limits defined by ෝ߱௜௎௅ and ෝ߱௜௅௅, then the value 
of ݅th individual desirability function falls to zero.  
 Further, the individual desirability functions 
for all five modes were utilized to produce the 
overall desirability function using (6). In the present 
research work, all five modes were considered 
equally important and hence the value of ݎ௜ was set 
as unity for all individual desirability functions. It is 
to be mentioned here that the overall desirability 
function will achieve a unit value only if all the 
individual desirability functions are each equal to 
unity. If any of the individual desirability function 
value falls down, the value of overall desirability 
function will also get reduced accordingly. Thus, the 
complex FEMU problem was simplified to 
maximization of scale-free and single overall 
desirability function. After locating the maxima of 
overall desirability function, corresponding values 
of the updating parameters were found. Updating 
parameters were then used to produce an updated 
FE model of beam structure. 
 
3 Experimental: A Beam Structure 
An undamped cantilever beam structure as drawn in 
Fig. 2 was considered in the present case study. This 
particular structure was taken because of its 
resemblance with many real life products such as 
wing of an airplane, blade of the rotor of a turbine; 
wing of a ceiling fan, an integrated chip of a 
mechatronic product etc. The beam is of mild steel 
material having the dimensions 910 x 49 x 7 mm3, 
density of 6728 kg/m3 and Young’ modulus of 
elasticity as 200 GPa. 
 

 
Fig. 2 FE model of cantilever beam structure. 
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4 Procedure 
Procedure adopted for structural dynamic model 
updating of the cantilever beam structure is 
explained in following subsections. 
 
4.1 Calculation of FE and Simulated 
Experimental Natural Frequencies 
FE model of the beam was developed in Matlab [44] 
by using 60 beam elements each having two nodes. 
FE model was then used for producing the FE 
natural frequencies for first five modes. After that a 
perturbation was introduced into the FE model by 
reducing the elastic modulus (ܧ) and moment of 
inertia (ܫ) of first two elements near fixed end by 
60%. The so-called perturbed FE model was 
processed in Matlab to produce the simulated 
experimental results, now onwards to be called as 
experimental results only. It is to be noted here that 
simulated experimental results have been used 
earlier also by many researchers for model updating 
related research work [45–48]. FE and experimental 
results for first five natural frequencies are presented 
in Table 1. From Table 1, it is quite clear that there 
existed a mismatch between FE and experimental 
results. Purpose of FEMU was to reduce this 
mismatch by updating the physical parameters of FE 
model. So, the experimental results were taken as 
targets; while the input parameters of the FE model 
were updated by using the newly developed 
technique of FEMU that used the concepts of RSM 
and Derringer’s function. Before applying RSM to 
current FEMU problem, experimental design was 
performed as described in sub-section 4.2. 
 
 

Table 1 Comparison of experimental and FE 
results. 

 
Response 
variable 

Experimental 
results (Hz) FE results (Hz) 

ωଵ 5.75  7.45  
ωଶ 39.90  46.66  
ωଷ 117.11  130.64  
ωସ 236.13  256.01  
ωହ 397.34  423.20  

 
 
4.2 Generation of Response Surface Models 
for First Five Natural Frequencies 
Statistically significant RS models of first five 
natural frequencies were developed by using the 

concepts of D-optimal design, RSM and analysis of 
variance (ANOVA). RS models were preferred over 
original FE model because of their computational 
advantages. While implementing the D-optimal 
design, using Design-Expert software [49], firstly 
the range of each updating parameter (Elastic 
modulus ܧ, and moment of inertia ܫ) was decided. 
Lower and upper limits for both updating 
parameters were taken as -50% and +50% of their 
actual values respectively. Lower limit for elastic 
modulus (ܧ) was taken as 40 GPa (i.e., 0.5 times 80 
GPa, where 80 GPa is the actual value of elastic 
modulus) and upper limit of this parameter was 
taken as 120 GPa (i.e., 1.5 times 80 GPa). For 
moment of inertia (ܫ) parameter, lower and upper 
limits were considered as 280.12 x 10-12 m4 (i.e., 0.5 
times 560.23 x 10-12 m4, where 560.23 x 10-12 m4 is 
the actual value of moment of inertia) and 840.35 x 
10-12 m4 (i.e., 1.5 times 560.23 x 10-12 m4) 
respectively. Relationship between updating 
parameters (ܧ and ܫ) and response variables (߱ଵ, 
߱ଶ, ߱ଷ, ߱ସ and ߱ହ) was assumed to be quadratic. A 
quadratic fit was assumed because it was giving 
better results than a linear or a cubic model. A coded 
parameter ܣ was defined in such a way that it varied 
linearly between -1 and +1 over the complete range 
of ܧ. Similarly, another coded parameter ܤ was 
defined and related to ܫ. Coordinate exchange 
method [50] was used for candidate selection, 
because it does not require a candidate list, which if 
unchecked grows exponentially as the size of the 
problem increases [51]. D-optimality criterion was 
used to develop experimental design matrix of 
physical updating parameters. The design matrix 
consisted of a total of 15 test runs. The experimental 
design matrix contained the information about 
various combinations of different levels of input 
variables at which different experimental runs were 
to be performed. Experimental design matrix was 
then imported in Matlab and used in conjunction 
with unperturbed FE model of beam in order to find 
out corresponding natural frequencies of the beam 
structure as tabulated in Table 2. Results presented 
in Table 2 were then used to develop the RS models 
for first five natural frequencies. 

Before using any RS model, checking of 
goodness of fit of each RS the model is very much 
required. In order to check the adequacy of the 
model, ANOVA was performed [52]. F-test method 
was used to carry out the hypothesis testing to check 
the significance of different parameters. The results 
of ANOVA using F-test for first natural frequency 
are presented in Table 3.  
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Table 2 Design of experimental matrix and 
results for first five natural frequencies. 

 
  

Run No. 

Updating parameters Response variables 
(Natural frequencies in Hz) 

Elastic 
modulus 
 ܣ,ܧ

Moment 
of inertia 
 ܤ,ܫ

ωଵ  ωଶ  ωଷ  ωସ  ωହ  

1 61.6 417.67 4.9 37.9 114.2 232.5 392.7 

2 40.0 840.35 5.3 38.8 115.5 234.1 394.8 

3 120.0 840.35 6.7 43.2 122.9 243.8 406.7 

4 40.0 530.31 4.6 37.4 113.4 231.4 391.2 

5 80.0 560.24 5.7 39.9 117.1 236.1 397.3 

6 120.0 280.12 5.3 38.8 115.5 234.1 394.8 

7 80.0 840.35 6.3 41.5 119.8 239.6 401.6 

8 120.0 840.35 6.7 43.2 122.9 243.8 406.7 

9 98.0 420.18 5.6 39.6 116.6 235.5 396.5 

10 102.1 684.54 6.3 41.7 120.1 240.0 402.0 

11 120.0 529.42 6.2 41.3 119.4 239.1 400.9 

12 40.0 280.12 3.6 35.8 111.3 228.5 386.3 

13 59.8 698.95 5.6 39.6 116.7 235.6 396.7 

14 80.0 280.12 4.7 37.5 113.6 231.7 391.7 

15 40.0 840.35 5.3 38.8 115.5 234.0 394.8 

 
 

Table 3 ANOVA for ෝ࣓ ૚. 
 

Source Sum of  
squares 

Degrees 
of 

freedom 

Mean  
square F-Value Prob > F 

Model 9.93 5 1.99    2766.49 < 0.0001* 

A 4.89 1 4.89 6806.66 < 0.0001* 

B 4.85 1 4.85 6759.53 < 0.0001* 

A × B 0.03 1 0.03 43.00 0.0001* 

Aଶ 0.15 1 0.15 210.81 < 0.0001* 

Bଶ 0.16 1 0.16 216.06 < 0.0001* 

Residual 0.01 9 0.00  
Lack of Fit 0.01 7 0.00  
Pure Error 0.00 2 0.00  
Cor Total 9.94 14   

Standard deviation = 0.03 R2 = 0.9993 

Mean = 5.55 R2 Adjusted = 0.9990 

Coefficient of variation (%) = 0.48 Predicted R2 = 0.9987 

PRESS = 0.01 Adequate precision = 179.67 
 *: Significant 

 Table 3 suggests that RS model for ෝ߱ଵ is 
statistically significant. Lack of fit term is not 
significant as its mean square value is zero. Pure 
error is zero, which is expected because there are no 
measurement errors, since the experimental runs 
were performed by running the perturbed FE model. 
Further, factor ܣ (Elastic modulus), factor ܤ 
(Moment of inertia), second order terms of factors ܣ 
as well as ܤ and also the interaction of factor ܣ with 
factor ܤ all are significant. Value of R2 and adjusted 
R2 is over 99%. This means that the RS model gives 
a sufficiently accurate relationship between updating 
parameters and response variables. Moreover, the 
“Predicted R2” value is 0.9987, which is in good 
agreement with the “Adjusted R2” value of 0.9990. 
The predicted residual error sum of squares 
(PRESS), which is a measure of discrepancy 
between experimental response values and RS 
predicted response values, is just 0.01; which shows 
that the quadratic model well fits each point in the 
design. Further, in order to check for normal 
distribution of residuals, normal probability plot of 
the residuals for ෝ߱ଵ was drawn in Fig. 3. 
 

 
Fig. 3 Normal probability plot of residuals for 

ෝ࣓ ૚. 
 
 In Fig. 3, the residuals are falling along a 
straight line, which shows that the residuals are 
normally distributed. Fig. 4 shows the values of the 
first natural frequency predicted by the RS model 
versus the values actually observed. Fig. 4 proves 
that the RS model is fairly well fitted with the 
observed values. Using regression analysis method 
[52] in conjunction with the data points provided in 
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Table 2, the polynomial equation for first natural 
frequency predicted by the RS model is written as:-  
 
(in coded terms) 
 
 ෝ߱ଵ = 5.76 + ܣ0.76 + ܤ0.76 − ܤܣ0.072 −
ଶܣ0.24                           −  ଶ                               (8)ܤ0.25
 
(in actual factors) 
 
 ෝ߱ଵ = 0.46 + ܧ0.05 − 6.77 × 10ିଷܫ −
                          6.47 × 10ି଺ܫܧ − 1.52 ×
                          10ିସܧଶ −  3.15 × 10ି଺ܫଶ               (9) 
 

 
Fig. 4 Predicted versus actual values of ෝ࣓ ૚. 

 
 
 

 
Fig. 5 Response surface for ෝ࣓ ૚. 

 
Fig. 6 Contour plot for ෝ࣓ ૚. 

 
 

 Three-dimensional distribution of RS of ෝ߱ଵ 
with respect to updating parameters ܧ and ܫ is 
drawn in Fig. 5. Fig. 6 shows the contour plot of ෝ߱ଵ 
in relation to the updating parameters. It can be seen 
from Fig. 6 that as the elastic modulus (ܧ) or the 
moment of inertia (ܫ) increase the value of ෝ߱ଵ also 
increases. Similar analysis was also performed for 
next four natural frequencies. ANOVA tables for 
ෝ߱ଶ, ෝ߱ଷ, ෝ߱ସ and ෝ߱ହ are shown in Table 4 to 7 
respectively.  
 
 

Table 4 ANOVA for ෝ࣓ ૛. 
 

Source Sum of  
squares 

Degrees 
of 

freedom 

Mean  
square F-Value Prob > F 

Model 64.85 5  12.97 1286.23  < 0.0001* 

1 30.15 ܣ  30.15 2990.30  < 0.0001* 

1 29.90 ܤ  29.90 2965.07  < 0.0001* 

ܣ × 1 00.59 ܤ  00.59 58.48  < 0.0001* 

ଶ 00.35 1ܣ  00.35 34.28  0.0002 

ଶ 00.37 1ܤ  00.37 36.76  0.0002 

Residual 00.09 9  00.01    
Lack of Fit 00.09 7  00.01    
Pure Error 00.00 2  00.00    
Cor Total 64.94 14      

 Standard deviation = 0.10 R2 = 0.9986 

 Mean = 39.67 R2 Adjusted = 0.9978 

 Coefficient of variation (%) = 0.25 Predicted R2 = 0.9927 

 PRESS = 0.47 Adequate precision = 119.05 
 *: Significant 
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Table 5 ANOVA for ෝ࣓ ૜. 
 

Source Sum of  
squares 

Degrees 
of 

freedom 

Mean  
square F-Value Prob > F 

Model 166.14 5  33.23 2092.43  < 0.0001* 

1 74.61 ܣ  74.61 4698.01  < 0.0001* 

1 73.97 ܤ  73.97 4658.24  < 0.0001* 

ܣ × 1 03.58 ܤ  03.58 225.43  < 0.0001* 

ଶ 00.46 1ܣ  00.46 28.90  0.0004 

ଶ 00.50 1ܤ  00.50 31.18  0.0003 

Residual 00.14 9  00.02    
Lack of Fit 00.14 7  00.02    
Pure Error 00.00 2  00.00    
Cor Total 166.28 14      

Standard deviation = 0.13 R2 = 0.9991 

Mean = 116.96 R2 Adjusted = 0.9987 

Coefficient of variation (%) = 0.11 Predicted R2 = 0.9956 

PRESS = 0.72 Adequate precision = 149.21 
 *: Significant 
 
 
 
 

Table 6 ANOVA for ෝ࣓ ૝. 
 

Source Sum of  
squares 

Degrees 
of 

freedom 

Mean  
square F-Value Prob > F 

Model 279.83 5  55.97 11013.91  < 0.0001* 

1 125.40 ܣ  125.40 24677.74  < 0.0001* 

1 124.40 ܤ  124.40 24481.33  < 0.0001* 

ܣ × 1 06.17 ܤ  06.17 1213.65  < 0.0001* 

ଶ 00.69 1ܣ  00.69 134.98  < 0.0001* 

ଶ 00.72 1ܤ  00.72 141.84  < 0.0001* 

Residual 00.05 9  00.01   
Lack of Fit 00.05 7  00.01   
Pure Error 00.00 2  00.00   
Cor Total 279.88 14     

Standard deviation = 0.071 R2 = 0.9998 

Mean = 235.99 R2 Adjusted = 0.9997 

Coefficient of variation (%) = 0.030 Predicted R2 = 0.9994 

PRESS = 0.17 Adequate precision = 342.03 
 *: Significant 
 
 
 

Table 7 ANOVA for ෝ࣓ ૞. 
 

Source Sum of  
squares 

Degrees 
of 

freedom 

Mean  
square F-Value Prob > F 

Model 456.28 5 91.26 2846.28  < 0.0001* 

1 211.21 ܣ 211.21 6587.63  < 0.0001* 

1 209.70 ܤ 209.70 6540.62  < 0.0001* 

ܣ × 1 4.61 ܤ 4.61 143.73  < 0.0001* 

ଶ 1.90 1ܣ 1.90 59.36  < 0.0001* 

ଶ 1.93 1ܤ 1.93 60.09  < 0.0001* 

Residual 0.29 9 0.03   
Lack of Fit 0.29 7 0.04   
Pure Error 0.00 2 0.00   
Cor Total 456.57 14    

Standard deviation = 0.18 R2 = 0.9994 

Mean = 397.00 R2 Adjusted = 0.9990 

Coefficient of variation (%) = 0.045 Predicted R2 = 0.9973 

PRESS = 1.24 Adequate precision = 176.75 
 *: Significant 
 
 After fitting the RS model to the 
experimental results, the RS models for next four 
natural frequencies are given by the regression 
equations (10) to (17). Corresponding contour plots 
have been presented in Figs. 7 to 10. 
 
(in coded terms) 
 
 ෝ߱ଶ = 39.90 + ܣ1.89 + ܤ1.89 + ܤܣ0.32 −
ଶܣ0.37                           −  ଶ                            (10)ܤ0.38
 
 ෝ߱ଷ = 117.13 + ܣ2.97 + ܤ2.97 +
ܤܣ0.78                           − ଶܣ0.42 −  ଶ        (11)ܤ0.44
 
 ෝ߱ସ = 236.17 + ܣ3.86 + ܤ3.85 +
ܤܣ1.02                           − ଶܣ0.52 −  ଶ        (12)ܤ0.53
 
 ෝ߱ହ = 397.45 + ܣ5 + ܤ5 + ܤܣ0.89 −
ଶܣ0.86                           −  ଶ                            (13)ܤ0.87
 
(in actual factors) 
 
 ෝ߱ଶ = 30.6 + ܧ0.07 + 9.94 × 10ିଷܫ +
                          2.83 × 10ିହܫܧ − 2.3 × 10ିସܧଶ −
                          4.87 × 10ି଺ܫଶ                                 (14) 
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 ෝ߱ଷ = 104.90 + ܧ0.08 + ܫ0.01 +
                          6.97 × 10ିହܫܧ − 2.64 × 10ିସܧଶ −
                          5.63 × 10ି଺ܫଶ                                 (15) 
 
 ෝ߱ସ = 220.65 + ܧ0.10 + ܫ0.01 +
                          9.14 × 10ିହܫܧ − 3.23 × 10ିସܧଶ −
                          6.80 × 10ି଺ܫଶ                                 (16) 
 
 ෝ߱ହ = 374.05 + ܧ0.17 + ܫ0.02 +
                          7.90 × 10ିହܫܧ − 5.38 × 10ିସܧଶ −
                          1.11 × 10ିହܫଶ                                 (17) 
 
 

 
Fig. 7 Contour plot for ෝ࣓ ૛. 

 

 
Fig. 8 Contour plot for ෝ࣓ ૜. 

 

 
Fig. 9 Contour plot for ෝ࣓ ૝. 

 
 

 
Fig. 10 Contour plot for ෝ࣓ ૞. 

 
 After having generated the RS models for 
all response variables, next step was to define the 
sub-objectives of the FEMU based multi-objective 
optimization problem, which is explained in next 
section. 
 
4.3 Formulation of Individual Desirability 
Functions 
Individual desirability functions were formulated by 
using the data provided in Table 8. The target values 
shown in Table 8 are the actual experimental values 
of corresponding natural frequencies. Weighting on 
lower as well as upper limit of each sub-objective 
were set to unity in order to give equal weightage to 
the corresponding lower and upper limits. All 
relative importance coefficients were also set to 
unity so as to give equal importance to all the sub-
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objectives. If any particular mode is more important 
than others, then its importance can be reflected by 
increasing the value of its corresponding relative 
importance coefficient. The values given in Table 8 
were combined with the mathematical equation of 
individual desirability function shown in (7) to 
formulate the individual desirability functions for 
first five RS predicted natural frequencies. 
 
 

Table 8 Details of the formulation of sub-
objectives of FEMU. 

 
RS Predicted  

response  
variable 

ෝ߱௜் 
(Hz) 

ෝ߱௜௅௅ 
(Hz) 

ෝ߱௜௎௅ 
(Hz) ݓଵ ݓଶ  ௜ݎ 

ωෝଵ 5.75 5.69 5.81 1 1 1 

ωෝଶ 39.90 39.50 40.30 1 1 1 

ωෝଷ 117.11 115.94 118.28 1 1 1 

ωෝସ 236.13 233.77 238.49 1 1 1 

ωෝହ 397.37 393.37 401.32 1 1 1 

 
 Graphically, the individual desirability 
functions of different modes have been drawn in 
Figs. 11 to 15. Value of any individual desirability 
function for any particular mode will be unity, only 
if RS predicted value of natural frequency of that 
particular mode will be equal to corresponding 
experimental value. Thus FEMU problem was 
converted to an optimization problem, where the 
five sub-objectives were to maximize the scale-free 
individual desirability functions.  
 
 

 
Fig. 11 Individual desirability function for ෝ࣓ ૚. 

 
Fig. 12 Individual desirability function for ෝ࣓ ૛. 

 
 

 
Fig. 13 Individual desirability function for ෝ࣓ ૜. 

 

 
Fig. 14 Individual desirability function for ෝ࣓ ૝. 
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Fig. 15 Individual desirability function for ෝ࣓ ૞. 

 
4.4 Formulation and Optimization of Overall 
Desirability 
Individual desirability functions were then 
combined to produce a single overall desirability 
function by using (6). Now the multi-objective 
optimization problem is transformed to a single 
objective one; which was later optimized using the 
RSM. It is found that the optimum value of the 
overall desirability function is 0.999928653, which 
is very near to unity. This optimum value of the 
overall desirability function was achieved when the 
elastic modulus (ܧ) and moment of inertia (ܫ) were 
set at 79.90 GPa and 559.63 x 10-12 m4 respectively. 
The updated values of the elastic modulus (ܧ) and 
moment of inertia (ܫ) were then used to update the 
FE model of the beam structure. The response 
surface of the overall desirability function is also 
drawn in Fig. 16. It can be seen from Fig. 16 that 
high value of overall desirability function is 
achieved at only a few locations; while in most part 
of the design space the overall desirability function 
approaches zero. If elastic modulus takes a value 
lower than 52 GPa, the overall desirability function 
falls to zero; thereby restricting the design space. 
Moreover, if the moment of inertia parameter falls 
below 373 x 10-12 m4, the overall desirability 
function again falls to zero irrespective of the value 
of elastic modulus. This information is very 
important in the dynamic design applications such 
as eigenvalues optimization of beams [53]. In order 
to have some desired dynamic characteristics of a 
mechanical component (such as beam), one can 
explore a variety of solutions readily available from 
the solution space provided by the overall 
desirability function value. 
 

 
Fig. 16 Response surface of overall desirability 

function. 
 
4.5 Confirmation Experiments and 
Calculation of Errors in FEMU Results 
Confirmation experiments were performed to check 
the actual errors by implementing the optimal 
solution obtained through Derringer’s function 
approach. The FE model was updated by taking 
Young’ modulus of elasticity (ܧ) as 79.90 GPa and 
moment of inertia (ܫ) as 559.63 x 10-12 m4. 
Corresponding FE results were then compared with 
their experimental counterparts as shown in Table 9. 
Before FEMU, there was an absolute average error 
of 14.6% considering all five modes, which gets 
reduced to just 0.02% after FEMU. Further, it is 
seen that the updated values of all five FE natural 
frequencies are now matching with their target 
experimental counterparts; thereby proving the 
success of the current FEMU technique. Finally the 
experimental results were compared with their FE 
counterparts before and after FEMU by drawing 
Fig. 17. It is quite clear from Fig. 17 that the present 
FEMU technique has efficiently handled and 
reduced the errors in FE predicted results.  

 
Fig. 17 Comparison of experimental results with 

FE results before and after FEMU. 
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Table 9 Updated results. 
 

Response 
variable 

Experimental 
results (Hz) 

FE results  
before 

FEMU (Hz) 

Initial 
error (%) 

FE results 
after 

FEMU (Hz) 

Final 
error  
(%) 

ωଵ  5.75 7.45 29.44 5.75 -0.06 

ωଶ  39.90 46.66 16.94 39.89 -0.02 

ωଷ  117.11 130.64 11.55 117.10 -0.01 

ωସ  236.13 256.01 8.42 236.11 -0.01 

ωହ  397.34 423.20 6.51 397.32 -0.01 
 
 
5 Conclusions 
The paper presents an application of Derringer’s 
function in solving a multi-objective FEMU 
problem. It is shown that by using the proposed 
technique, objective functions of FEMU can be 
formulated in a very detailed, flexible, simplified 
and user friendly manner. Depending upon the 
preferences of the user, the target value, lower limit, 
upper limit, weight on lower limit, weight on upper 
limit and relative importance of each response 
variable can be set using this technique. The 
proposed technique of FEMU is especially useful 
where different vibration modes are not equally 
important but have different relative importance. 
Success of the proposed technique is validated by its 
application on FEMU of a simulated cantilever 
beam structure. Updating results show that by using 
the proposed technique, absolute average error of 
14.6% considering all five natural frequencies has 
been reduced to just 0.02%. This shows an 
improvement of 99.86% in error. Further, the 
method can be easily extended to all cases involving 
large number of updating parameters.  
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